Lipoproteins regulate expression of the steroidogenic acute regulatory protein (StAR) in mouse adrenocortical cells.
نویسندگان
چکیده
The steroidogenic acute regulatory protein (StAR) is required for the movement of cholesterol from the outer to the inner mitochondrial membrane, the site of cholesterol side chain cleavage. Here we describe a novel form of regulation of StAR gene expression in steroidogenic cells. Treatment of Y-1 BS1 adrenocortical cells with either low density lipoprotein (LDL) or high density lipoprotein (HDL) increases expression of endogenous StAR mRNA and protein in a dose-dependent manner. Induction of StAR mRNA by lipoprotein requires basal cAMP-dependent protein kinase, since the inhibitor, R(p)-8-Br-cAMP, inhibited induction of StAR protein by LDL. Likewise, basal StAR expression or LDL induction of StAR protein was not detectable in Y-1 kin-8 cells which are deficient in cAMP-dependent protein kinase. Aminoglutethimide and ketoconazole were used to determine if side chain cleavage of lipoprotein-derived cholesterol is required for induction of StAR mRNA. Treatment with either drug alone induced StAR mRNA expression 1.5-3-fold, while induction of StAR in cells treated with either drug plus LDL, was equal to, or greater than, induction seen with either agent alone, suggesting that lipoprotein does not regulate StAR via generation of an oxysterol intermediate. Both LDL and HDL increased expression of a mouse -966 StAR promoter-reporter construct 1.5-2.5-fold, indicating that regulation occurs at the level of transcription. In contrast, neither lipoprotein was able to induce transcription from a -966 StAR promoter in which the steroidogenic factor-1 site at -135 was abolished, indicating that regulation of StAR transcription by lipoproteins requires steroidogenic factor-1. The regulation of StAR gene expression by lipoproteins may represent a positive feedback circuit which links cholesterol availability with steroidogenic output.
منابع مشابه
Oxysterols regulate expression of the steroidogenic acute regulatory protein.
The steroidogenic acute regulatory (StAR) protein promotes intramitochondrial delivery of cholesterol to the cholesterol side-chain cleavage system, which catalyzes the first enzymatic step in all steroid synthesis. Intriguingly, substrate cholesterol derived from lipoprotein can upregulate StAR gene expression. Moreover, substrate oxysterols have been suggested to also play a role. To investig...
متن کاملCharacterization of the promoter region of the mouse gene encoding the steroidogenic acute regulatory protein.
Steroidogenic acute regulatory protein (StAR) delivers cholesterol to the inner mitochondrial membrane, where the cholesterol side-chain cleavage enzyme carries out the first committed step in steroid hormone biosynthesis. StAR expression is restricted to steroidogenic cells and is rapidly induced by treatment with trophic hormones or cAMP. We analyzed the 5'-flanking region of the mouse StAR g...
متن کاملDiazinon interrupts ovarian steroidogenic acute regulatory (StAR) gene transcription in gonadotropin-stimulated rat model
Organophosphate pesticides are considered as endocrine disruptors that interfere with reproductive functions. The corpus luteum (CL) is a transient endocrine gland that produces progesterone, a crucial hormone for a successful beginning and maintenance of pregnancy. Steroidogenic acute regulatory protein (StAR) facilitates the rate-limiting transfer of cholesterol from the outer mitochondrial m...
متن کاملDiazinon interrupts ovarian steroidogenic acute regulatory (StAR) gene transcription in gonadotropin-stimulated rat model
Organophosphate pesticides are considered as endocrine disruptors that interfere with reproductive functions. The corpus luteum (CL) is a transient endocrine gland that produces progesterone, a crucial hormone for a successful beginning and maintenance of pregnancy. Steroidogenic acute regulatory protein (StAR) facilitates the rate-limiting transfer of cholesterol from the outer mitochondrial m...
متن کاملThe Effects of Exercise on Expression of CYP19 and StAR mRNA in Steroid-Induced Polycystic Ovaries of Female Rats
Objective PCOS is the most frequent female endocrine disorder, affecting 5%-10% of women, is characterized by hyperandrogenism, oligo-/anovulation, and polycystic ovaries. The aim of the present research is to evaluate the expression of steroidogenic acute regulatory protein (StAR) and CYP19 (aromatase) mRNA in the ovary of EV-induced PCOS rat model and the effect of the treadmill and running w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 275 47 شماره
صفحات -
تاریخ انتشار 2000